

こちらは、第44回鹿大防災セミナー参加者用の配布資料になります。配布資料は、防災セミナー以外の目的に使用することを禁止します。配布資料の内容、テキスト、画像等の転載・引用を一切禁止します。1/6

									Vapor chamber group				Vapor ch	
		種々	ヮのベーパー	チャン	ンバ	-と	の比	較			世界·	ー「熱を逃がす」能力	す」能力の高いFGHP	
		Vapor char	nber type	Dimension Spreader Heat se			ie	Heat input	Thermal characteristics					
thor	Casing material	Working fluid	Wick material	Size	Area [mm ²]	Size	Area Ratio [mm ²]	[W]	The best case in the respective research.)					
	Copper	Water	Copper plates manufactured by etching technique	50x50x2.0	2500	5x5	25 0.01	49.7	0.080 KW ⁻¹	75	••••••••••••••••••••••••••••••••••••••		FOURAL MATTAL AND	
al.(2004)	Copper	Methanol	Copper plate manufactured by etching technique	31x31x2.7	961	13.97x13.97	195 0.20	45	1.09 KW ¹ , Fig. 8, groove 82 %	/0	jeen	$-\Box$ - Inis work (FGHP spreader, L_{la} =3.0) $-\Box$ - Go et al. (2005) (L_{la} =12.0)	FGAP®は、洗給メダルやメダルメッ	
2005)	Juminum	Acetone	Stainless steel manufactured by etching technique	83.1x69.1x3.5	5742	12x12	600 0.10	140	0.236 KW ⁻¹ (evaporator), Fig. 6(b)	60	Je-e	- O − Koito et al. (2006) (L ₁₆ =12.2 to 24.5) - O − Wong et al. (2010) (W=1.6, m=5.0g, L ₁₆ =21.0)	めるいは、カーホンテノチューノをワ	
et al.	Copper	Water	Sintered copper powder (porosity: 40%)	76.2x88.9	6774	24.5x24.5	600 0.089	144	The effective thermal conductivity in the liquid-wick region. k is 8.32 Wm ⁴ K ⁻¹ .	≥ 50	10	-D-Wong et al. (2010) (W−1.6, m−4.3g, L _{bs} −21.0) -Δ-Wong et al. (2010) (W−1.0, m−3.75g, L, −21.0)	に用いたヘーハーナヤンハーに応	
et al.	Copper	Water	Sinter made of copper powders (porosity: 40 %)	76.2x88.9x4.6	6774	12.2x12.2 17.3x17.3 24.5x24.5	149 0.022 299 0.044 600 0.089	24 - 220	0.12 KW ² , Fig. 10			-▼- Wong et al. (2010) (W=1.0, m=3.4g, L _{la} =21.0) ◆ Wong et al. (2010) (W=1.0, m=3.75g, L _{la} =21.0)	熱抵抗が大幅に小さい*	
	Copper	Water	Parallel plate	42x35	1470			50 - 420	0.118 KW ¹ (heat sink total), Fig. 7		1800	-Wong et al. (2010) (W-1.0, m-3.85g, L _{bs} -11.0) -Wong et al. (2010) (W-1.0, m-3.4g, L, -11.0)	*世界的な伝統系子伝統(めるApplied Thermal Engineering 他のペーパーチャンバーに対する優位性が示された (vol	
en et al. C	Conner	Ethanol	Sintered copper powders has a thickness of 0.5 mm and a porosity of 0.36	86x71x5	6106 20x 40x	10x10 20x20	100 0.016 400 0.066	30 - 60	R _{ve} [KW ⁻¹] 0.0357 (aspect ratio 0.512) Orthotropic approach	<u>کْ 30</u>		Wong et al. (2010) (ThermaBase TM)	461-471 (2016))	
						40x40	1600 0.26		k, [Wm ⁺ K ⁻¹] 48.74 k, [Wm ⁺ K ⁻¹] 2316.1, Table 1	54.01	Distance /			
al. (2010)	Copper	Water	Mesh	87.6x92x4	8059			30	0.143 KW ⁻¹ , Fig. 6			$-\blacksquare$ - Weibel et al. (2012) (L_{lac} = 5.0) $-\boxdot$ - Weibel et al. (2013) (L_{c} = 5.0)	Applied Thermal Engineering	
ang et al.	Copper	Water	Porosity of the capillary structure in the interior of capity is under 0.5	90x90x3	8100	90x71	6390 0.79	60 - 180	965 Wm ⁻¹ K ⁻¹ , at 55 CFM, Conclusion	FGHP _10			Securit Response care descaped and descape and descape descaped and descape an	
ing Wong C	Copper	Water	200 mesh x 1 or 2 with 100 mesh with parallel channel of 1.0 mm (W1.0), 1.6 mm (W1.6), 2.0 mm (W2.0) width, triangle cross section	100x80x1.0-1.5		11x11	121 0.015			1/// が最小 。			Extremely "A sector of the interaction of the optimized and the interaction of the int	
					8000			17-365	0.0429 KW ⁻¹ , Fig. 8	0 L	051015202	2530354045505560	 Control (1) and (2) And gate on a specific filter time care departed share (1)(2) filter to in types (2) And (2) and (2	
						21821	++1 0.055				0.0 1.0 1.0 2.0	210 510 515 110 115 510 515 010	Be used and the original and the or	
ang Wong			Bottom: 200 mesh,			11x11	121 0.015		and the set of the set	U _{hs} 最大	($q_{in} [MW/m^{}]$	Here Harris and Har	
	Copper	water, methanol, acetone	top: 100 mesn with parallel channel of 1.0 mm width, triangle cross section	100x80x1.0-1.5	8000	21x21 31x31	441 0.055 961 0.12	17-365	0.027 K.W." (Water, 9.61 cm'), Fig. 8a				the data the data the data spectra to plane them data spectra to plane them data spectra to plane them data the data spectra to plane them data spectra to plane them data spectra to plane them data the data spectra to plane them data spectra t	
al. (2011)	Copper	Water	Sintered copper powder	Φ50	1963	12.4x12.4	154 0.078	200	0.173 KW4, Table 2	Fig. 入熱流	束に対する種々	?のベーパーチャンバーの伝熱性能	1 manuari Manuari, Antonia per la del los contrates de las contrates de l	
al. (2012)	Silicon	Water,	Silicon	38x38x3	1444	30x4	120 0.08	4.5-10	0.110 K/W, Table 2, Sample D	U _{hs} :熱源面積	基準の総括伝熱	条係数 (大きいほど伝熱効率が高い)	Note at a 40% of the barry between barries of the strength of	
l et al.	Copper	Water	CNT, partially opened plate	25.4x25.4	645	5x5	25 0.039	6 - 140	(comment nom 12 men transfer experiment) 0.223 KW ¹ , G:0 (Grid pattern), Fig. 5a	(<i>q_{in}: 熟源から</i>)	の入熱流来	J)	The second secon	
l et al.	Conner	Watar	Integrates conventional copper screen mesh	25.4x25.4x1,		1-1	24 0.020	4 170	0.25 KW-1 Eig 7)	Were performance in an entering in the second of	

こちらは、第44回鹿大防災セミナー参加者用の配布資料になります。配布資料は、防災セミナー以外の目的に使用することを禁止します。配布資料の内容、テキスト、画像等の転載・引用を一切禁止します。5/6

